Каков состав жаропрочной стали?

Различные марки жаропрочных и жаростойких сталей и сплавов признаются лучшим  материалом для изготовления конструкций, функционирующих в особо сложных и агрессивных средах.

Окалиностойкость, иначе называемая жаростойкостью, представляет собой способность тех или иных сплавов либо металлов противостоять на протяжении длительного времени при повышенных температурах газовой коррозии. А под жаропрочностью понимают способность металлических материалов не поддаваться разрушению и пластической деформации при высоких температурных режимах работы.

Жаропрочные металлы и сплавы

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Ненагруженные конструкции, которые применяются при температурах в районе +550 °С в газовой окислительной атмосфере, обычно изготавливаются из жаростойких металлов. К указанным изделиям часто относят элементы нагревательных печей.

Сплавы на базе железа при температурах выше указанных 550 градусов склонны к активному окислению, в результате коего на их поверхности формируется оксид феррума.

Это соединение характеризуется элементарной кристаллической решеткой с недостатком атомов кислорода, что приводит к появлению окалины хрупкого типа. Увеличить жаростойкость стали удается тогда, когда в нее вводят такие элементы, как кремний, хром, алюминий.

Они способны создавать с кислородом совершенно другие решетки – с очень плотным и надежным строением. Уровень легированности композиции (количество требуемых добавок) подбирают с учетом температуры, при которой планируется применять изделие, изготовленные из него.

Максимальная жаростойкость присуща материалам на базе никеля (сильхромам). К таковым, в частности, относят следующие марки стали:

  • 36Х18Н25С2;
  • 15Х25Т;
  • 08Х17Т;
  • 15Х6СЮ.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Вообще, жаростойкость сталей будет тем выше, чем больше в них имеется хрома. Некоторые марки стальных композиций способны без ухудшения своих начальных свойств работать даже при температурах в районе 1150 °С.

Марки таких сталей идеальны для производства изделий, функционирующих в условиях, когда присутствует явление ползучести и, естественно, повышенные температуры. Ползучестью называют склонность металла к медленной деформации (пластической) при неизменной температуре под влиянием постоянной нагрузки.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Жаропрочность сплавов зависит от вида имеющейся ползучести, которая может быть:

  • длительной;
  • кратковременной.

Последняя устанавливается в ходе специально проводимых анализов на растяжение изделий. Обследования осуществляются в течение непродолжительного времени при заранее заданной температуре в нагревательной печи.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

А длительная ползучесть определяется, как вы сами понимаете, на протяжении большего времени воздействия на сталь. И в данном случае главное значение имеет величина предела ползучести – наибольшее напряжение, вызывающее разрушение испытуемого изделия при конкретном времени воздействия и температуре.

По состоянию своей структуры такие сплавы бывают:

  • мартенситно-ферритными;
  • перлитными;
  • аустенитными;
  • мартенситными.

А жаростойкие сплавы дополнительно подразделяются еще на:

  • аустенитно-ферритные или мартенситные;
  • ферритные.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Известны следующие марки мартенситных сталей:

  • 3Х13Н7С2 и 4Х9С2 (используются при температурах 850–950° в клапанах автодвигателей);
  • Х5М, 1Х12H2ВМФ, 1Х8ВФ, Х6СМ, Х5ВФ (применяются для производства узлов и разнообразных деталей, работающих в течение 1000–10000 часов при температурах от 500 до 600°);
  • Х5 (из них делают трубы для использования при температурах не более 650°);
  • 1Х8ВФ (применяются для изготовления компонентов паровых турбин, функционируют без потери свойств в течение 10000 часов и более при температуре до 500°).

Мартенситные сплавы получаются из перлитных при повышении в последних количества хрома. Непосредственно к перлитным относят следующие жаростойкие и жаропрочные стали: Х13Н7С2, Х7СМ, Х9С2, Х10С2М, Х6СМ, Х6С (то есть все виды хромомолибденовых и хромокремнистых составов).

Их закаливают при температурах 950–1100 градусов, а затем (при 8100 градусах) выполняют отпуск стали, что позволяет получить твердые материалы (по шкале HRC – не менее 25 единиц) со структурой сорбита.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Жаростойкие ферритные стали имеют мелкозернистую структуру после их отжига и термообработки. В таких композициях присутствует от 25 до 33 процентов хрома. Используются они для пиролизного оборудования и теплообменников. К ферритным сталям относят далее указанные марки: Х28, Х18СЮ, Х17, Х25Т, 0Х17Т, 1Х12СЮ.

Отметим, что их нельзя нагревать более 850 градусов, так как в этом случае изделия станут хрупкими за счет своей крупнозернистой структуры.

Мартенситно-ферритные сплавы хорошо зарекомендовали себя при производстве машиностроительных деталей, которые планируется использовать при 600° на протяжении существенного времени. Такие жаропрочные стали (1Х13, 1Х12В2МФ, 1Х12ВНМФ, Х6СЮ, 2Х12ВМБФР, 1Х11МФ) легируются молибденом, вольфрамом, ванадием, а хрома в них, как правило, содержится от 10 до 14 процентов.

Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома.

В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.

Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:

  • дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин);
  • гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления).

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости.

Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:

  • пирометрических трубок (марка – Х23Н13);
  • печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2).

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

В тех случаях, когда требуется изготовить детали, которые смогут применяться при температурах от 1000 до 2000 градусов, используются стали на основе тугоплавким металлов. К ним относят элементы, характеризуемые следующими температурами плавления (в градусах):

  • 3410 – вольфрам;
  • около 3000 – тантал;
  • 2415 – ниобий;
  • 1900 – ванадий;
  • 1855 – цирконий;
  • 3180 – рений;
  • около 2600 – молибден;
  • почти 2000 – гафний.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Данные металлы деформируются (пластически) при нагреве, что обусловлено высокой температурой их изменения в хрупкое состояние. При нагреве до величин рекристаллизации формируется волокнистая структура тугоплавких металлов и наклеп. Показатель жаропрочности таких материалов обычно увеличивают привнесением специальных добавок.

А их защита при температурах более 1000 градусов от окисления обычно выполняется легированием с использованием молибдена, тантала, титана и других элементов.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Часто используются тугоплавкие сплавы с такими составами:

  • 30 % рения + вольфрам;
  • 40 % ниобия + 60 % ванадия;
  • 48 % железа + 1 % циркония + 5 % молибдена + 15 % ниобия;
  • 10 % вольфрама + тантал.

Указанные сплавы, жаростойкость и жаропрочность которых очень высока, имеют в своем составе свыше 55 % никеля и более 65 % комплекса никель + железо. Базовым элементом в обоих видах композиций при этом является хром (его содержится от 14 до 23 %).

Более высокие показатели стойкости и прочности при повышенных температурах демонстрируют стали на основе никеля: ХН60В, ХН75МБТЮ, ХН60Ю, ХН78Т (жаропрочные) и ХН77ТЮ, ХН70МВТЮБ, ХН70ВМЮ, ХН70, ХН67ВМТЮ (жаростойкие). Обусловлен сей факт процессом формирования на их поверхности при высоких температурах оксидной алюминиевой и хромовой пленки, а также (в твердых растворах) – соединений алюминия и никеля, титана и никеля.

В никелевых сплавах из-за несущественного содержания в них углерода никогда не появляются карбиды. А их упрочнение – это последствие твердения, характеризуемого дисперсной природой, после выполнения термообработки. Под такой обработкой понимают:

  • создание твердой однородной композиции никеля и легирующих добавок;
  • следующее за этим старение металла (температура процесса – около 750 градусов, иногда — 800).

В процессе распада твердого пересыщенного состава формируются металлические упрочняющие компоненты, которые существенно увеличивают показатель жаропрочности стали и ее сопротивляемость деформациям.

Назначение и марки сталей с никелем, с никелем и железом:

  • составляющие газовых конструкций – ХН35ВМТЮ;
  • элементы турбин – ХН35ВТР;
  • диски и лопатки компрессоров – ХН35ВТЮ;
  • роторы турбин – ХН35ВТ, ХН35ВМТ.

Источник: http://tutmet.ru/zharoprochnye-zharostojkie-stali-splavy-marki-zharostojkost.html

Жаропрочные стали и сплавы

Жаропрочная сталь используется при изготовлении разных деталей, которые контактируют с агрессивными средами, при этом подвергаются значительным нагрузкам, вибрациям и высокому термическому воздействию. К примеру, сюда относятся следующие изделия: турбины, печи, котлы, компрессоры и т.п. Далее представлены характеристики термостойких, жаропрочных сплавов, классификация, марки, особенности их применения.

Жаростойкая сталь (или окалиностойкая) – металлический сплав, используемый в ненагруженном или слабонагруженном состоянии и способный на протяжении длительного времени в условиях высоких температур (более 550 ºС) сопротивляться газовой коррозии.

Жаропрочные металлы – изделия, которые под высоким термическим воздействием сохраняют свою структуру, не разрушаются, не поддаются пластической деформации. Важная характеристика таких металлов – условный предел ползучести и длительной прочности. Жаропрочные сплавы могут быть жаростойкими, однако не всегда такими бывают, поэтому в агрессивных средах могут быстро повредиться по причине окисления.

Свойства жаростойких и жаропрочных сплавов

Для повышения жаростойкости используются легирующие добавки, которые также улучшают прочность металлов. Благодаря легированию на поверхности сплавов образуется защитная пленка, снижающая скорость окисления изделий.

Основные легирующие элементы: никель, хром, алюминий, кремний. В процессе нагрева образуются защитные оксидные пленки (Cr,Fe)2O3, (Al,Fe)2О.

При содержании 5–8 % хрома жаростойкость стали увеличивается до 700–750 градусов по Цельсию, 17 % хрома – до 1000 градусов, при 25 % хрома – до 1100 градусов. Жаропрочные марки металлов – сплавы на основе железа, никеля, титана, кобальта, упрочненные выделениями избыточных фаз (карбидов, карбонитридов и др.).

Читайте также:  Чем отличаются стеклопластиковая и металлическая арматуры?

Жаропрочностью обладают хромоникелевые и хромоникелевомарганцевые стали. Под воздействием высоких температур они не склонны к ползучести (медленная деформация при наличии постоянных нагрузок). Температура плавления жаропрочной стали составляет 1400-1500 °С.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью.

Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия.

Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С.

В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным.

Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля.

Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
Металл Температура плавления, ºC
Вольфрам 3410
Тантал Около 3000
Ванадий 1900
Ниобий 2415
Цирконий 1855
Рений 3180
Молибден Около 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие.

Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов. Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

Марки жаростойких и жаропрочных сталей

В зависимости от состояния структуры различают аустенитные, мартенситные, перлитные и мартенситно-ферритные жаропрочные металлы. Жаростойкие сплавы разделяются на ферритные, мартенситные или аустенитно-ферритные виды.

Марки стали Изделия из жаропрочных сталей
4Х9С2 Клапаны автомобильных двигателей, рабочая температура 850–950 ºC.
1Х12H2ВМФ, Х6СМ, Х5М, 1Х8ВФ, Х5ВФ Узлы, детали, работающие при температуре до 600 ºC на протяжении 1000–10000 часов.
Х5 Трубы, эксплуатируемые при рабочей температуре до 650 ºC.
1Х8ВФ Элементы паровых турбин, которые работают при температуре до 500 ºC на протяжении 10000 часов и более.

Перлитные марки, имеющие хромокремнистый и хромомолибденовый состав жаропрочной стали: Х13Н7С2, Х10С2М, Х6СМ, Х7СМ, Х9С2, Х6С.

Хромомолибденовые составы 12МХ, 12ХМ, 15ХМ, 20ХМЛ подходят для использования при 450-550 °С, хромомолибденованадиевые 12Х1МФ, 15Х1М1Ф, 15Х1М1ФЛ – при температуре 550-600 °С.

Их применяют при производстве турбин, запорной арматуры, корпусов аппаратов, паропроводов, трубопроводов, котлов.

Ферритная сталь изготавливается путем обжига и термообработки, за счет чего приобретает мелкозернистую структуру. Сюда относят марки Х28, Х18СЮ, 0Х17Т, Х17, Х25Т, 1Х12СЮ. Содержание хрома в таких сплавах 25-33 %.

Их применяют на производстве теплообменников, аппаратуры для химических производств (пиролизного оборудования), печного оборудования и прочих конструкций, которые работают длительное время при высокой температуре и не подвержены воздействию серьезных нагрузок. Чем больше хрома в составе, тем выше температура, при которой сталь сохраняет эксплуатационные свойства.

Жаростойкая ферритная сталь не обладает высокой прочностью, жаропрочностью, отличается хорошей пластичностью и неплохими технологическими параметрами.

Жаропрочная сталь: марки и состав жаростойких сталей и сплавов

Мартенситно-ферритная сталь содержит 10-14 % хрома, легирующие добавки ванадий, молибден, вольфрам. Материал используется при изготовлении элементов машин, паровых турбин, оборудования АЭС, теплообменников атомных и тепловых ЭС, деталей, предназначенных для длительной эксплуатации при 600 ºC. Марки сталей: 1Х13, Х17, Х25Т, 1Х12В2МФ, Х6СЮ, 2Х12ВМБФР.

Аустенитные стали отличаются широким применением в промышленности. Жаропрочностные и жаростойкие характеристики материала обеспечиваются за счет никеля и хрома, легирующих добавок (титан, ниобий).

Такие стали сохраняют технические свойства, стойкие к коррозии при воздействии температуры до 1000 ºC. Сравнительно со сталями ферритного класса, аустенитные сплавы обладают повышенной жаропрочностью, способностью к штамповке, вытяжке, свариванию. Термическая обработка металлов осуществляется путем закалки при 1000–1050 °С.

Марки стали Применение жаропрочных сталей
08X18Н9Т, 12Х18Н9Т, 20Х25Н20С2, 12Х18Н9 Выхлопные системы, листовые, сортовые детали, трубы, работающие при невысокой нагрузке и температуре до 600–800 °С.
36Х18Н25С2 Печные контейнеры, арматура, эксплуатируемые при температуре до 1100 °С.
Х12Н20Т3Р, 4Х12Н8Г8МФБ Клапаны двигателей, детали турбин.

Аустенитно-ферритные стали отличаются повышенной жаропрочностью по сравнению с обычными высокохромистыми сплавами. Такие металлы применяются при изготовлении ненагруженных изделий, рабочая температура 1150 ºC. Из марки Х23Н13 изготавливают пирометрические трубки, из марки Х20Н14С2, 0Х20Н14С2 – печные конвейеры, резервуары для цементации, труб.

Источник: https://alfa-stl.ru/zharoprochnye-stali-i-splavy/

Жаростойкие и жаропрочные сплавы

Жаростойкие и жаропрочные сплавы обладают высокой жаропрочностью и жаростойкостью, что определяет их применение в качестве конструкционных материалов для изготовления изделий с повышенными требованиями к механической прочности и коррозионной стойкости при высоких температурах. На странице представлено описание данных сплавов: свойства, области применения, марки жаростойких и жаропрочных сплавов, виды продукции.

Жаропрочные сплавы и стали — материалы, работающие при высоких температурах в течение заданного периода времени в условиях сложно-напряженного состояния и обладающие достаточным сопротивлением к коррозии в газовых средах.

Жаростойкие сплавы и стали — материалы, работающие в ненагруженном или слабо-нагруженном состоянии при повышенных температурах (более 550 °C) и обладающие стойкостью к коррозии в газовых средах.

Активный интерес к подобным материалам стал проявляться в конце 30-х годов XX века, когда появилась необходимость в материалах способных работать при достаточно высоких температурах. Это связано с развитием реактивной авиации и газотурбинных двигателей.

Основой жаростойких и жаропрочных сплавов могут быть никель, кобальт, титан, железо, медь, алюминий. Наиболее широкое распространение получили никелевые сплавы. Они могут быть литейными, деформируемыми и порошковыми.

Наиболее распространенными среди жаропрочных являются литейные сложнолегированные сплавы на никелевой основе, способные работать до температур 1050-1100 °C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.

Поскольку речь идет о жаростойких и жаропрочных сталях и сплавах, то стоит дать определение терминам жаропрочность, жаростойкость. Жаропрочность — способность сталей и сплавов выдерживать механические нагрузки при высоких температурах в течение определенного времени. При температурах до 600°С обычно применяют термин теплоустойчивость. Можно дать более строгое определение жаропрочности.

Под жаропрочностью также понимают напряжение, вызывающее заданную деформацию, не приводящую к разрушению, которое способен выдержать металлический материал в конструкции при определенной температуре за заданный отрезок времени. Если учитываются время и напряжение, то характеристика называется пределом длительной прочности; если время, напряжение и деформация — пределом ползучести.

Ползучесть — явление непрерывной деформации под действием постоянного напряжения. Длительная прочность — сопротивление материала разрушению при длительном воздействии температуры.

Жаростойкость характеризует сопротивление металлов и сплавов газовой коррозии при высоких температурах.

Можно выделить несколько классификаций сплавов и сталей, которые работают при повышенных и высоких температурах.

Наиболее общей является следующая классификация жаростойких и жаропрочных сталей и сплавов:

  • Теплоустойчивые стали — работают в нагруженном состоянии при температурах до 600°С в течение длительного времени. Примером являются углеродистые, низколегированные и хромистые стали ферритного класса.
  • Жаропрочные стали и сплавы — работают в нагруженном состоянии при высоких температурах в течение определенного времени и обладают при этом достаточной жаростойкостью. Примерами являются стали аустенитного класса на хромоникелевой или хромоникельмарганцевой основах с различными легирующими элементами и сплавы на никелевой или кобальтовой основе.
  • Жаростойкие (окалиностойкие) стали и сплавы — работают в ненагруженном или слабонагруженном состоянии при температурах выше 550°С и обладают стойкостью против химического разрушения поверхности в газовых средах. В качестве примера можно привести хромокремнистые стали мартенситного класса, хромоникелевые аустенитные стали, хромистые и хромоалюминиевые стали ферритного класса, а также сплавы на основе хрома и никеля.

Также существует классификация по способу производства: Для жаропрочных сплавов и сталей основным полезным свойством с практической точки зрения является способность материала выдерживать механические нагрузки в условиях высоких температур. Существуют различные схемы нагружения жаропрочных материалов: статические растягивающие, изгибающие или скручивающие нагрузки, термические нагрузки вследствие изменений температуры, динамические переменные нагрузки различной частоты и амплитуды, динамическое воздействие скоростных газовых потоков на поверхность. При этом указанные материалы должны выдерживать соответствующий тип нагружения. Основным практически полезными свойствами жаростойких сталей и сплавов является коррозионная стойкость материала в газовых средах при высоких температурах.

Читайте также:  Какие характеристики стеклопластиковой арматуры?

В то же время, с точки зрения производства готовых изделий важную роль играют технологические свойства. При создании деформируемых сплавов необходимо обеспечить достаточную технологическую пластичность при обработке давлением, в том числе при температурах 700-800 °С, а литые сплавы должны иметь удовлетворительные литейные свойства (жидкотекучесть, пористость).

В настоящее время сплавы на никелевой основе имеют наибольшее значение в качестве жаропрочных материалов, предназначенных для работы при температурах от 700 до 1100°С.

Химический состав по ГОСТ 5632-72, ТУ 14-1-402-72, % (по массе):

  • сплава ЭИ437Б — 19-22 Cr; 2,4-2,8 Ti; 0,6-1,0 Al;
  • сплава ЭИ437БУ — 19-22 Cr; 2,5-2,9 Ti; 0,6-1,0 Al;

Технологические данные:

  • сплав изготавливается в открытых дуговых или индукционных печах с применением вакуумного дугового переплава;
  • температура деформации — начало 1180 °С, ко­нец не ниже 900 °С, охлаждение после деформации на воздухе;
  • рекомендуемые режимы термической обработки: ХН77ТЮР (ЭИ437Б) — нагрев до 1080 °С, выдержка 8 ч, охлаждение на воз­духе;

Сплав ХН70ВМТЮ (ЭИ617)

Химический состав по ГОСТ 5632-72, % (по массе):

  • 13-16 Cr;
  • 2-4 Мо;
  • 5-7 W;
  • 0,1-0,5 V;
  • 1,8-2,3 Ti;
  • 1,7-2,3 Al;
  • остальное никель.

Технологические данные:

  • сплав изготавливается в дуговых и индукционных электропечах и с применением вакуумного дугового переплава;
  • температура деформации — начало 1160, конец выше 1000 °С, охлаждение после деформации иа воздухе;
  • рекомендуемые режимы термической обработки: нагрев до 1190±10 °С, выдержка 2 ч, охлаждение на воздухе; нагрев до 1050 °С, выдержка 4 ч, охлаждение на воздухе; старение при 800 °С в течение 16 ч, охлаждение на воздухе;
  • нагрев до 1180 °С, выдержка 6 ч, охлаждение на воздухе; нагрев до 1000 °С, охлаждение с печью до 900 °С, выдержка 8 ч, охлаждение на воздухе; старение при 850 °С в течение 15 ч, охлаждение на воздухе.

Основными жаростойкими материалами, которые используют в газовых турбинах, печах и различного рода высокотемпературных установках с рабочей температурой до 1350 °С, являются сплавы на основе железа и никеля. Высокое сопротивление окислению сталей и сплавов связано в первую очередь с большим количеством хрома, входящего в состав сплавов. Например, максимальное содержание хрома (по массе) в количестве 26-29 % имеет сплав на основе никеля ХН70Ю.

Сплав ХН70Ю (ЭИ652)

Химический состав по ГОСТ 5632-72, % (по массе): 26-29 Cr; 2,8-3,5 Al; Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1180, конец выше 900 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 1100-1200 °С, выдержка 10 мин, охлаждение на воздухе;
  • сварка сплава в тонких сечениях может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке, предельный коэффициент вытяжки K = D / (d + s) = 2,17, где D — диаметр заготовки; d — диаметр пуансона; s — толщина стенки в мм.

Сплав ХН78Т (ЭИ435)

Химический состав по ГОСТ 5632-72, % (по массе): 19-22 Cr; Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1160, конец не ниже 950 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 980-1020 °С, охлаждение на воздухе или в воде;
  • сварка сплава может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке при штамповке.

Сплав ХН60ВТ (ЭИ868)

Химический состав по ГОСТ 5632-72, % (по массе):

  • 23,5-26,5 Cr;
  • 13-16 W.

Технологические данные:

  • сплав выплавляется в открытых дуговых или индукционных электропечах;
  • температура деформации — начало 1180, конец не ниже 1050 °С, охлаждение после деформации на воздухе;
  • рекомендуемый режим термической обработки — нагрев до 1150-1200 °С, выдержка листа 10 минут, прутков 2-2,5 часов, охлаждение на воздухе;
  • сварка сплава может производиться всеми видами сварки;
  • сплав обладает способностью к глубокой вытяжке, предельный коэффициент вытяжки составляет 2,06.

Сплавы ХН65МВ (ЭП567), ХН65МВУ (ЭП760) (хастеллой)

Химический состав по ГОСТ 5632-72, % (по массе):

  • 14,5-16,5 Cr;
  • 15-17 Mo;
  • 3-4,5 W.

Полуфабрикаты из указанных сплавов подвергаются термической обработке, которая заключается в закалке при температуре 1050-1090 °С и последующем охлаждении в воде.

Применяются для сварки конструкций, работающих при повышенных температурах в достаточно агрессивных средах (серная, уксусная кислота, хлориды и др.).

Сталь СВ-06Х15Н60М15 (ЭП367)

Химический состав по ГОСТ 2246-70, % (по массе):

  • 14-16 Cr;
  • 14-16 Mo.

Указанная сталь не относится к категории жаропрочных или жаростойких, но используется для сварки конструкций из таких сплавов. Она применяется для сварки деталей из сплавов на никелевой основе, например, ХН78Т, ХН70ВМЮТ и подобных, а также для сварки разнородных металлов, например, хромистых сталей со сплавами на никелевой основе. Помимо сварки может осуществляться наплавка.

Достоинства:

  • обладают высокой жаропрочностью;
  • имеют хорошие показатели жаростойкости.

Недостатки:

  • сплавы с содержанием хрома и особенно никеля имеет высокую стоимость;
  • имея в своем составе большое количество различных компонентов, достаточно трудоемки в производстве.

Указанные материалы применяются при изготовлении деталей ракетно-космической техники, в газовых турбинах двигателей самолетов, кораблей, энергетических установок, в нефтехимическом оборудовании.

К таким деталям можно отнести рабочие лопатки, турбинные диски, кольца и другие элементы газовых турбин, а также камеры сгорания, узлы деталей печей и прочих изделий, длительно работающих при повышенных температурах. Диапазон рабочих температур, как правило, составляет 500-1350 °С. Полуфабрикаты из некоторых сплавов используются в качестве присадочного материала при сварке.

Выпускаются различные полуфабрикаты из жаропрочных и жаростойких сталей и сплавов. Стоит отметить жаропрочные прутки и круги, проволоку и нить, жаропрочные листы и полосы, ленту, а также трубы. Перечисленные полуфабрикаты находят применение в областях промышленности, в которых предъявляются высокие требования к жаропрочности и жаростойкости изделий.

Источник: https://www.metotech.ru/garsplavy-opisanie.htm

Особенности жаропрочных и жаростойких сталей и их применение.

Прежде чем говорить о свойствах жаропрочных сталей, дадим определения терминам «жаростойкость» и «жаропрочность».

  • Жаростойкость (окалиностойкость) – это устойчивость металлов и их сплавов к газовой коррозии в условиях повышенной температуры.
  • Жаропрочность – это устойчивость металлов и их сплавов к пластической деформации при механических нагрузках в условиях повышенной температуры.

Жаростойкие сплавы применяются при изготовлении ненагруженных конструкций, таких как элементы нагревательных печей, эксплуатируемых в условиях газовой окислительной среды при температуре порядка +550 ºC. При температуре свыше +550 ºC сплавы на основе железа активно окисляются, что приводит к формированию оксида железа на поверхности. Таким образом появляется окалина хрупкого типа.

Жаростойкость стали увеличивают введением в состав сплава легирующих добавок ― кремния, хрома, алюминия. Эти элементы, в отличие от железа, под воздействием кислорода образуют соединения с плотными кристаллическими решетками.

Сплавы на основе никеля (сильхромы) обладают максимальной жаростойкостью. К ним относят такие марки стали, как:

  • 36Х18Н25С2;
  • 15Х25Т;
  • 08Х17Т;
  • 15Х6СЮ.

Подводя итог, можно заметить, что жаростойкость стали зависит от количества хрома в сплаве – чем его больше, тем выше жаростойкость. Что касается температурных пределов, то необходимо отметить, что некоторые марки стали работают без ухудшения своих начальных свойств даже при температурах около +1150 °С.

Жаропрочные стали используются при производстве изделий, при условиях «ползучести» и при повышенных температурах. Ползучестью называют склонность металлов или их сплавов к медленной пластической деформации при постоянных температурах и нагрузке. Она может быть двух видов:

  • длительной;
  • кратковременной.

Жаростойкие и жаропрочные марки сталей классифицируют следующим образом.

По состоянию структуры:

  • мартенситно-ферритные;
  • перлитные;
  • аустенитные;
  • мартенситные.

При этом жаростойкие сплавы дополнительно подразделяют на:

  • аустенитно-ферритные или мартенситные;
  • ферритные.

Некоторые марки мартенситных сталей и их применение.

Марки стали Применение
3Х13Н7С2, 4Х9С2 Эксплуатируются при температурах 850–950 ºC, применяются при изготовлении клапанов автодвигателей
Х5М, 1Х12H2ВМФ, 1Х8ВФ, Х6СМ, Х5ВФ Эксплуатируются при температурах от 500 до 600 ºC, применяются при изготовлении узлов и разнообразных деталей, работающих в течение 1000–10000 часов
Х5 Эксплуатируются при температурах не более 650 ºC, применяются при изготовлении труб.
1Х8ВФ Эксплуатируются при температурах при температуре до 500 ºC, применяются при изготовлении компонентов паровых турбин, функционируют без потери свойств в течение 10000 часов и более

Мартенситные стали получают из перлитных путем добавления большего количества хрома, закалки при температурах 950–1100 ºC и последующем отпуске стали. К перлитным маркам стали относят такие жаростойкие и жаропрочные стали хромомолибденового и хромокремнистого состава, как:

  • Х13Н7С2;
  • Х7СМ;
  • Х9С2;
  • Х10С2М;
  • Х6СМ;
  • Х6С.

Жаростойкие ферритные стали проходят процедуру отжига и термообработки, после которых их структура становится мелкозернистой. В составе таких сталей содержится от 25 до 33 % хрома. Жаростойкие ферритные стали используются при изготовлении пиролизного оборудования и теплообменников.

К жаростойким ферритным сталям относят такие марки, как:

  • Х28;
  • Х18СЮ;
  • Х17;
  • Х25Т;
  • 0Х17Т;
  • 1Х12СЮ.

Мартенситно-ферритные стали в качестве легирующих добавок содержат молибден, вольфрам, ванадий. Содержание хрома в составе мартенситно-ферритных сталей, значительно меньше, чем в ферритных – от 10 до 14 %.

Мартенситно-ферритные стали используются при производстве машиностроительных деталей, длительное время эксплуатируемых при температуре около 600 ºC.

Читайте также:  Узнаем, что такое томпак

К мартенситно-ферритным сталям относятся такие марки, как:

  • 1Х13;
  • 1Х12В2МФ;
  • 1Х12ВНМФ;
  • Х6СЮ;
  • 2Х12ВМБФР;
  • 1Х11МФ.

Жаростойкие аустенитные стали наиболее востребованы в промышленности. Содержание углерода в таких сталях очень незначительно.

Структура жаростойких аустенитных сталей обеспечивается наличием никеля в химическом составе, а жаростойкость – наличием хрома. Кроме того, в состав этих сталей в качестве легирующих добавок входят такие химические элементы, как ниобий, титан. Жаростойкие аустенитные стали устойчивы к появлению окалины при температурах до 1000 ºC и обладают антикоррозионными свойствами.

На настоящий момент в промышленности для изготовления клапанов двигателей транспортных средств и деталей турбин чаще всего используются аустенитные стали, относящиеся к категории дисперсионно-твердеющих сплавов:

  • 0Х14Н28В3Т3ЮР;
  • Х12Н20Т3Р;
  • 4Х12Н8Г8МФБ;
  • 4Х14Н14В2М.

Для изготовления труб и трубопроводной арматуры, эксплуатируемых в условиях больших нагрузок, элементов выхлопных систем, агрегатов сверхвысокого давления применяют гомогенные аустенитные сплавы:

  • 1Х14Н16Б;
  • Х25Н20C2;
  • Х23Н18;
  • Х18Н10T;
  • Х25Н16Г7АР;
  • Х18Н12T;
  • 1Х14Н18В2Б.

Аустенитно-ферритные стали обладают уникальной стабильностью строения, в связи с чем их жаропрочность значительно больше, чем у обычных высокохромистых сплавов. При этом хрупкость у таких сплавов повышена.

Аустенитно-ферритные стали используют при изготовлении ненагруженных деталей, эксплуатируемых при температуре около 1150 ºC.

Например, марка Х23Н13 применяется при изготовлении пирометрических трубок, а марки Х20Н14С2 и 0Х20Н14С2 – при изготовлении печных конвейеров, труб, емкостей для цементации.

При необходимости изготовить детали, которые будут выдерживать температуры от 1000 до 2000 ºC, применяют тугоплавкие металлы и их сплавы (см. Таблицу 2).

Температура плавления некоторых тугоплавких металлов.

Металл Температура плавления, ºC
Вольфрам 3410
Тантал ≈3000
Ниобий 2415
Ванадий 1900
Цирконий 1855
Рений 3180
Молибден ≈2600
Гафний ≈2000

Переход тугоплавких металлов в хрупкое состояние происходит при очень высоких значения температур, поэтому при нагреве такие металлы пластически деформируются.

Когда температура достигает точки рекристаллизации, тугоплавкие металлы начинают формировать волокнистую структуру и наклеп. Свойство жаропрочности сплавов из таких металлов достигается внесением специальных добавок. Легирующие добавки в виде молибдена, тантала, титана и других элементов использую и для того, чтобы защитить сплавы от окисления при температурах свыше 1000 ºC.

Наиболее часто используемые тугоплавкие сплавы имеют такие химические составы в процентном соотношении:

  • 30 % рения + вольфрам;
  • 40 % ниобия + 60 % ванадия;
  • 48 % железа + 1 % циркония + 5 % молибдена + 15 % ниобия;
  • 10 % вольфрама + тантал.

Стали на основе никеля и стали системы «железо-никель» содержат 55 % никеля и 65 % комплекса «железо-никель», при этом в своем составе они содержат от 14 до 23 % хрома.

Стали на основе никеля имеют одни из самых высоких показателей стойкости и прочности при повышенных температурах, что обусловлено формированием на поверхности сплава оксидной алюминиевой и хромовой пленки, а также соединений алюминия и никеля, титана и никеля. Среди жаропрочных сталей это:

  • ХН60В;
  • ХН75МБТЮ;
  • ХН60Ю;
  • ХН78Т.

А среди жаростойких:

  • ХН77ТЮ;
  • ХН70МВТЮБ;
  • ХН70ВМЮ;
  • ХН70;
  • ХН67ВМТЮ.

Стали на основе никеля и стали системы «железо-никель» широко используются в промышленности.

Некоторые марки стали на основе никеля и системы «железо-никель» и их применение.

Марка стали Применение
ХН35ВМТЮ Применяются при изготовлении элементов газовых конструкций
ХН35ВТР Применяются при изготовлении элементов турбин
ХН35ВТЮ Применяются при изготовлении дисков и лопаток компрессоров
ХН35ВТ, ХН35ВМТ Применяются при изготовлении роторов турбин

Жаропрочные и жаростойкие стали поставляются в виде различного проката: сортового (круг, квадрат, шестигранник, полоса, арматура), фасонного (балка, швеллер, уголок), листового, трубного.

Источник: https://spec-metall.tiu.ru/n161672-osobennosti-zharoprochnyh-zharostojkih.html

Жаропрочная сталь: что она собой представляет, её марка, классификация и описание

Изготавливается этот материал специальным способом, который позволяет выдерживать и не деформироваться при долговременном негативном внешнем воздействии долгий временной промежуток. Характеризуется эта разновидность стали ползучестью и прочностью, которые являются основными показателями этого продукта промышленности.

Ползучесть отвечает за действие непрерывной деформации материала при нахождении стали в неблагоприятных условиях. Прочность отвечает за период, который может жаропрочная сталь противостоять внешним воздействиям.

Жаростойкая марка сплавов – что это?

Жаропрочность, которая ещё называется окалиностойкостью, показывает с какой прочностью тот или иной материал при высокой температуре на протяжении длительного времени может противостоять газовой коррозии. Способность стали не поддаваться пластической деформации и разрушению свидетельствует о том, что этот материал является жаростойким.

Такие жаростойкие сплавы применяются во многих отраслях промышленности. Например, нагревательный элемент печей, который работает при +550°С не может быть изготовлен из обычной, не жаропрочной стали, она просто не сможет выдержать такой нагрузки.

Чтобы произвести сталь жаропрочной марки нужно в сплав добавить такие элементы, как алюминий, хром, кремний. Именно такие соединения позволяют воспроизводить с кислородом другие решётки, которые отличаются надёжным и плотным строением. Количество и состав добавок формируется в зависимости от окружающей среды, в какой будет впоследствии работать эта жаростойкая марка стали.

Максимальная жаростойкость сплавов обнаруживают те материалы, которые были произведены базе никеля. Маркировка, которая относится к таким сплавам:

  • 15Х25Т;
  • 36Х18Н25С2;
  • 15Х6СЮ;
  • 08Х17Т.

Добавление хрома также способствует увеличению жаропрочности стальных композиций, которые могут, не теряя своих основных качеств работать даже при — 1150 °С.

Жаропрочная марка сплава – что она собой представляет

Марка такой стали подходит для изготовления изделий, которые будут функционировать в условиях повышенной температуры и будет присутствовать эффект ползучести. Ползучесть или склонность сплава к медленной деформации происходит под воздействием постоянной нагрузки и неизменной температуре.

Ползучесть металла бывает двух видов:

  • Длительной;
  • Кратковременной.

Так как жаропрочность сплава и её марка зависит от вида ползучести, то её устанавливают во время растяжения изделий и проведении анализов на основе итогов поведения сплава. Проводят такие процедуры в нагревательной печи при заданных температурах. Так определяется предел ползучести и разрушение материала при воздействии температуры и временного промежутка.

Марки жаростойких сталей, их классификация и описание

Структуры таких жаростойких сталей подразделяются на:

  • перлитные;
  • мартенситно-ферритные;
  • мартенситные;
  • аустенитные.

Существует и подразделение жаропрочных сплавов на аустенитно-ферритные (мартенситные) и ферритные.

Производится такие марки мартенситных сплавов:

  • 4Х9С2 и 3Х13Н7С2 (такая марка стали используется в основном в клапанах автодвигателей, где температура поднимается до 850–950°С);
  • Х6СМ, Х5М, 1Х8ВФ, 1Х12H2ВМФ, Х5ВФ (такой сплав подойдёт для производства деталей и узлов, которые должны работать 1000–10000 часов в границах температур 500 — 600°С);
  • Х5 (такая марка используется для производства труб, которые будут работать при температуре ограниченной 650°С);
  • 1Х8ВФ (такой вид сплавов используют при изготовлении деталей паровых турбин, которые могут работать 10000 часов без потерь при температуре, которая не будет превышать 500°С).

При добавлении хрома в перлитные сплавы получаются мартенситные марки сплавов. К перлитным материалам можно отнести жаропрочные сплавы с маркировкой: Х7СМ, Х10С2М, Х9С2, Х6С. Производится их закалка при 950–1100°С, а затем при 8100°С производят отпуск стали, что позволяет создавать твёрдые конструкции со структурой сорбита.

Ферритные сплавы обладают мелкозернистой структурой, которую они получают после термообработки и обжига. В таких композициях, как правило, присутствует хром в процентном соотношении от двадцати пяти до тридцати трёх. Такие жаропрочные стали применяют производства теплообменников и пиролизного оборудования.

К ферритным сплавам относят такие маркировки материалов: 1Х12СЮ, Х28, Х17, Х18СЮ, 0Х17Т, Х25Т. Но их нельзя нагревать больше чем сто восемьдесят градусов иначе материал станет хрупким из-за своей крупнозернистой структуры.

Мартенситно-ферритные материалы отлично подходят для производства машиностроительных деталей, работа которых будет производиться при температуре в шестьсот градусов, причём длительное время.

Самые востребованные жаростойкие сплавы

Аустенитные жаростойкие сплавы стали самыми востребованными материалами в данный момент в этом сегменте сталеварения. Их структура создаётся при помощи входящего в состав никеля, а жаростойкие качества обеспечиваются наличием хрома. Такие аустенитные марки хорошо противостоят появлению окалины при температурах, не превышающих тысячи градусов.

При изготовлении этого сплава используют два вида уплотнителя: интерметаллический или карбидный. Именно эти уплотнители обеспечивают аустенитную сталь особыми свойствами, которые так востребованы в различных современных производствах.

Самые востребованные и актуальные сплавы делятся на две группы:

  • дисперсионно-твердеющие (марки Х12Н20Т3Р, 0Х14Н28В3Т3ЮР, 4Х14Н14В2М, 4Х12Н8Г8МФБ – такая сталь самый подходящий материал для изготовления деталей турбин и клапанов двигателей);
  • гомогенные (марки Х25Н20C2, 1Х14Н16Б, Х23Н18, Х25Н16Г7АР, Х18Н10T, 1Х14Н18В2Б, Х18Н12T – данные марки используются для производства труб и арматуры, которые будут работать при больших нагрузках).

Аустенитно-ферритные стали благодаря своему сплаву со стабильным строением обнаруживают довольно-таки высокую жаропрочность. Подобные марки из-за своей хрупкости нельзя использовать для производства нагруженных деталей, но эти сплавы отлично себя показывают при температурах, доходящих до 1150°С.

Тугоплавкие металлы и сплавы

Если в производстве необходимы детали предположительная среда работы, которых будет тысяча или даже две тысячи градусов, то при сплаве нужно использовать тугоплавкие металлы.

Элементы, которые используются и температура их плавления такова:

  • вольфрам (3410°С);
  • тантал (3000°С);
  • ниобий (2415°С);
  • ванадий (1900°С);
  • цирконий (1855°С);
  • рений (3180°С);
  • молибден (2600°С);
  • гафний (2000°С).

Деформируются данные металлы при нагреве, потому что высокая температура провоцирует их изменение в хрупкое состояние.

Их волокнистая структура формируется при нагревании до состояния рекристаллизации тугоплавких металлов. Жаропрочность увеличивается за счёт смесей из специальных добавок.

А от окисления при температуре свыше тысячи градусов эти материалы защищают добавки из титана, тантала и молибдена.

Источник: https://stanok.guru/stal/marki-staley-kotorye-yavlyayutsya-zharoprochnymi.html

Ссылка на основную публикацию
Adblock
detector